On this page
numpy.linalg.eigh
numpy.linalg.eigh(a, UPLO='L')[source]-
Return the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.
Returns two objects, a 1-D array containing the eigenvalues of
a, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns).Parameters: -
a : (…, M, M) array -
Hermitian or real symmetric matrices whose eigenvalues and eigenvectors are to be computed.
-
UPLO : {‘L’, ‘U’}, optional -
Specifies whether the calculation is done with the lower triangular part of
a(‘L’, default) or the upper triangular part (‘U’). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero.
Returns: -
w : (…, M) ndarray -
The eigenvalues in ascending order, each repeated according to its multiplicity.
-
v : {(…, M, M) ndarray, (…, M, M) matrix} -
The column
v[:, i]is the normalized eigenvector corresponding to the eigenvaluew[i]. Will return a matrix object ifais a matrix object.
Raises: - LinAlgError
-
If the eigenvalue computation does not converge.
See also
Notes
New in version 1.8.0.
Broadcasting rules apply, see the
numpy.linalgdocumentation for details.The eigenvalues/eigenvectors are computed using LAPACK routines
_syevd,_heevd.The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1] The array
vof (column) eigenvectors is unitary anda,w, andvsatisfy the equationsdot(a, v[:, i]) = w[i] * v[:, i].References
[1] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222. Examples
>>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(a) >>> w; v array([0.17157288, 5.82842712]) array([[-0.92387953+0.j , -0.38268343+0.j ], # may vary [ 0. +0.38268343j, 0. -0.92387953j]])>>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j]) >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair array([0.+0.j, 0.+0.j])>>> A = np.matrix(a) # what happens if input is a matrix object >>> A matrix([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(A) >>> w; v array([0.17157288, 5.82842712]) matrix([[-0.92387953+0.j , -0.38268343+0.j ], # may vary [ 0. +0.38268343j, 0. -0.92387953j]])>>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[5.+2.j, 9.-2.j], [0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with: >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[5.+0.j, 0.-2.j], [0.+2.j, 2.+0.j]]) >>> wa, va = LA.eigh(a) >>> wb, vb = LA.eig(b) >>> wa; wb array([1., 6.]) array([6.+0.j, 1.+0.j]) >>> va; vb array([[-0.4472136 +0.j , -0.89442719+0.j ], # may vary [ 0. +0.89442719j, 0. -0.4472136j ]]) array([[ 0.89442719+0.j , -0. +0.4472136j], [-0. +0.4472136j, 0.89442719+0.j ]]) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.linalg.eigh.html