On this page
numpy.ma.allclose
numpy.ma.allclose(a, b, masked_equal=True, rtol=1e-05, atol=1e-08)[source]-
Returns True if two arrays are element-wise equal within a tolerance.
This function is equivalent to
allcloseexcept that masked values are treated as equal (default) or unequal, depending on themasked_equalargument.Parameters: -
a, b : array_like -
Input arrays to compare.
-
masked_equal : bool, optional -
Whether masked values in
aandbare considered equal (True) or not (False). They are considered equal by default. -
rtol : float, optional -
Relative tolerance. The relative difference is equal to
rtol * b. Default is 1e-5. -
atol : float, optional -
Absolute tolerance. The absolute difference is equal to
atol. Default is 1e-8.
Returns: -
y : bool -
Returns True if the two arrays are equal within the given tolerance, False otherwise. If either array contains NaN, then False is returned.
Notes
If the following equation is element-wise True, then
allclosereturns True:absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))Return True if all elements of
aandbare equal subject to given tolerances.Examples
>>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) >>> a masked_array(data=[10000000000.0, 1e-07, --], mask=[False, False, True], fill_value=1e+20) >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) False>>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) True >>> np.ma.allclose(a, b, masked_equal=False) FalseMasked values are not compared directly.
>>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) True >>> np.ma.allclose(a, b, masked_equal=False) False -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.allclose.html