On this page
numpy.ma.clip
numpy.ma.clip(a, a_min, a_max, out=None, **kwargs)[source]-
Clip (limit) the values in an array.
Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1]is specified, values smaller than 0 become 0, and values larger than 1 become 1.Equivalent to but faster than
np.maximum(a_min, np.minimum(a, a_max)). No check is performed to ensurea_min < a_max.Parameters: -
a : array_like -
Array containing elements to clip.
-
a_min : scalar or array_like or None -
Minimum value. If
None, clipping is not performed on lower interval edge. Not more than one ofa_minanda_maxmay beNone. -
a_max : scalar or array_like or None -
Maximum value. If
None, clipping is not performed on upper interval edge. Not more than one ofa_minanda_maxmay beNone. Ifa_minora_maxare array_like, then the three arrays will be broadcasted to match their shapes. -
out : ndarray, optional -
The results will be placed in this array. It may be the input array for in-place clipping.
outmust be of the right shape to hold the output. Its type is preserved. - **kwargs
-
For other keyword-only arguments, see the ufunc docs.
New in version 1.17.0.
Returns: -
clipped_array : ndarray -
An array with the elements of
a, but where values <a_minare replaced witha_min, and those >a_maxwitha_max.
See also
numpy.doc.ufuncs- Section “Output arguments”
Examples
>>> a = np.arange(10) >>> np.clip(a, 1, 8) array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, 3, 6, out=a) array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8) array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8]) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.clip.html