On this page
numpy.ma.fix_invalid
numpy.ma.fix_invalid(a, mask=False, copy=True, fill_value=None)[source]-
Return input with invalid data masked and replaced by a fill value.
Invalid data means values of
nan,inf, etc.Parameters: -
a : array_like -
Input array, a (subclass of) ndarray.
-
mask : sequence, optional -
Mask. Must be convertible to an array of booleans with the same shape as
data. True indicates a masked (i.e. invalid) data. -
copy : bool, optional -
Whether to use a copy of
a(True) or to fixain place (False). Default is True. -
fill_value : scalar, optional -
Value used for fixing invalid data. Default is None, in which case the
a.fill_valueis used.
Returns: -
b : MaskedArray -
The input array with invalid entries fixed.
Notes
A copy is performed by default.
Examples
>>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3) >>> x masked_array(data=[--, -1.0, nan, inf], mask=[ True, False, False, False], fill_value=1e+20) >>> np.ma.fix_invalid(x) masked_array(data=[--, -1.0, --, --], mask=[ True, False, True, True], fill_value=1e+20)>>> fixed = np.ma.fix_invalid(x) >>> fixed.data array([ 1.e+00, -1.e+00, 1.e+20, 1.e+20]) >>> x.data array([ 1., -1., nan, inf]) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.fix_invalid.html