On this page
numpy.ma.getmask
numpy.ma.getmask(a)[source]-
Return the mask of a masked array, or nomask.
Return the mask of
aas an ndarray ifais aMaskedArrayand the mask is notnomask, else returnnomask. To guarantee a full array of booleans of the same shape as a, usegetmaskarray.Parameters: -
a : array_like -
Input
MaskedArrayfor which the mask is required.
See also
getdata- Return the data of a masked array as an ndarray.
getmaskarray- Return the mask of a masked array, or full array of False.
Examples
>>> import numpy.ma as ma >>> a = ma.masked_equal([[1,2],[3,4]], 2) >>> a masked_array( data=[[1, --], [3, 4]], mask=[[False, True], [False, False]], fill_value=2) >>> ma.getmask(a) array([[False, True], [False, False]])Equivalently use the
MaskedArraymaskattribute.>>> a.mask array([[False, True], [False, False]])Result when mask ==
nomask>>> b = ma.masked_array([[1,2],[3,4]]) >>> b masked_array( data=[[1, 2], [3, 4]], mask=False, fill_value=999999) >>> ma.nomask False >>> ma.getmask(b) == ma.nomask True >>> b.mask == ma.nomask True -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.getmask.html