On this page
numpy.ma.masked_values
numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)[source]-
Mask using floating point equality.
Return a MaskedArray, masked where the data in array
xare approximately equal tovalue, determined usingisclose. The default tolerances formasked_valuesare the same as those forisclose.For integer types, exact equality is used, in the same way as
masked_equal.The fill_value is set to
valueand the mask is set tonomaskif possible.Parameters: -
x : array_like -
Array to mask.
-
value : float -
Masking value.
-
rtol, atol : float, optional -
Tolerance parameters passed on to
isclose -
copy : bool, optional -
Whether to return a copy of
x. -
shrink : bool, optional -
Whether to collapse a mask full of False to
nomask.
Returns: -
result : MaskedArray -
The result of masking
xwhere approximately equal tovalue.
See also
masked_where- Mask where a condition is met.
masked_equal- Mask where equal to a given value (integers).
Examples
>>> import numpy.ma as ma >>> x = np.array([1, 1.1, 2, 1.1, 3]) >>> ma.masked_values(x, 1.1) masked_array(data=[1.0, --, 2.0, --, 3.0], mask=[False, True, False, True, False], fill_value=1.1)Note that
maskis set tonomaskif possible.>>> ma.masked_values(x, 1.5) masked_array(data=[1. , 1.1, 2. , 1.1, 3. ], mask=False, fill_value=1.5)For integers, the fill value will be different in general to the result of
masked_equal.>>> x = np.arange(5) >>> x array([0, 1, 2, 3, 4]) >>> ma.masked_values(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2) >>> ma.masked_equal(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.masked_values.html