On this page
numpy.ma.MaskedArray.compress
method
MaskedArray.compress(self, condition, axis=None, out=None)[source]-
Return
awhere condition isTrue.If condition is a
MaskedArray, missing values are considered asFalse.Parameters: -
condition : var -
Boolean 1-d array selecting which entries to return. If len(condition) is less than the size of a along the axis, then output is truncated to length of condition array.
-
axis : {None, int}, optional -
Axis along which the operation must be performed.
-
out : {None, ndarray}, optional -
Alternative output array in which to place the result. It must have the same shape as the expected output but the type will be cast if necessary.
Returns: -
result : MaskedArray -
A
MaskedArrayobject.
Notes
Please note the difference with
compressed! The output ofcompresshas a mask, the output ofcompresseddoes not.Examples
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) >>> x masked_array( data=[[1, --, 3], [--, 5, --], [7, --, 9]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=999999) >>> x.compress([1, 0, 1]) masked_array(data=[1, 3], mask=[False, False], fill_value=999999)>>> x.compress([1, 0, 1], axis=1) masked_array( data=[[1, 3], [--, --], [7, 9]], mask=[[False, False], [ True, True], [False, False]], fill_value=999999) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.MaskedArray.compress.html