On this page
numpy.ma.where
numpy.ma.where(condition, x=<no value>, y=<no value>)[source]-
Return a masked array with elements from
xory, depending on condition.Note
When only
conditionis provided, this function is identical tononzero. The rest of this documentation covers only the case where all three arguments are provided.Parameters: -
condition : array_like, bool -
Where True, yield
x, otherwise yieldy. -
x, y : array_like, optional -
Values from which to choose.
x,yandconditionneed to be broadcastable to some shape.
Returns: -
out : MaskedArray -
An masked array with
maskedelements where the condition is masked, elements fromxwhereconditionis True, and elements fromyelsewhere.
See also
numpy.where- Equivalent function in the top-level NumPy module.
nonzero- The function that is called when x and y are omitted
Examples
>>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0], ... [1, 0, 1], ... [0, 1, 0]]) >>> x masked_array( data=[[0.0, --, 2.0], [--, 4.0, --], [6.0, --, 8.0]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=1e+20) >>> np.ma.where(x > 5, x, -3.1416) masked_array( data=[[-3.1416, --, -3.1416], [--, -3.1416, --], [6.0, --, 8.0]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=1e+20) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.where.html