On this page
numpy.polynomial.chebyshev.Chebyshev
class numpy.polynomial.chebyshev.Chebyshev(coef, domain=None, window=None)[source]-
A Chebyshev series class.
The Chebyshev class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as well as the methods listed below.
Parameters: -
coef : array_like -
Chebyshev coefficients in order of increasing degree, i.e.,
(1, 2, 3)gives1*T_0(x) + 2*T_1(x) + 3*T_2(x). -
domain : (2,) array_like, optional -
Domain to use. The interval
[domain[0], domain[1]]is mapped to the interval[window[0], window[1]]by shifting and scaling. The default value is [-1, 1]. -
window : (2,) array_like, optional -
Window, see
domainfor its use. The default value is [-1, 1].New in version 1.6.0.
Methods
__call__(self, arg)Call self as a function. basis(deg[, domain, window])Series basis polynomial of degree deg.cast(series[, domain, window])Convert series to series of this class. convert(self[, domain, kind, window])Convert series to a different kind and/or domain and/or window. copy(self)Return a copy. cutdeg(self, deg)Truncate series to the given degree. degree(self)The degree of the series. deriv(self[, m])Differentiate. fit(x, y, deg[, domain, rcond, full, w, window])Least squares fit to data. fromroots(roots[, domain, window])Return series instance that has the specified roots. has_samecoef(self, other)Check if coefficients match. has_samedomain(self, other)Check if domains match. has_sametype(self, other)Check if types match. has_samewindow(self, other)Check if windows match. identity([domain, window])Identity function. integ(self[, m, k, lbnd])Integrate. interpolate(func, deg[, domain, args])Interpolate a function at the Chebyshev points of the first kind. linspace(self[, n, domain])Return x, y values at equally spaced points in domain. mapparms(self)Return the mapping parameters. roots(self)Return the roots of the series polynomial. trim(self[, tol])Remove trailing coefficients truncate(self, size)Truncate series to length size. -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.polynomial.chebyshev.Chebyshev.html