On this page
numpy.polynomial.laguerre.lagder
numpy.polynomial.laguerre.lagder(c, m=1, scl=1, axis=0)[source]-
Differentiate a Laguerre series.
Returns the Laguerre series coefficients
cdifferentiatedmtimes alongaxis. At each iteration the result is multiplied byscl(the scaling factor is for use in a linear change of variable). The argumentcis an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series1*L_0 + 2*L_1 + 3*L_2while [[1,2],[1,2]] represents1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)if axis=0 isxand axis=1 isy.Parameters: -
c : array_like -
Array of Laguerre series coefficients. If
cis multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. -
m : int, optional -
Number of derivatives taken, must be non-negative. (Default: 1)
-
scl : scalar, optional -
Each differentiation is multiplied by
scl. The end result is multiplication byscl**m. This is for use in a linear change of variable. (Default: 1) -
axis : int, optional -
Axis over which the derivative is taken. (Default: 0).
New in version 1.7.0.
Returns: -
der : ndarray -
Laguerre series of the derivative.
See also
Notes
In general, the result of differentiating a Laguerre series does not resemble the same operation on a power series. Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.
Examples
>>> from numpy.polynomial.laguerre import lagder >>> lagder([ 1., 1., 1., -3.]) array([1., 2., 3.]) >>> lagder([ 1., 0., 0., -4., 3.], m=2) array([1., 2., 3.]) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.polynomial.laguerre.lagder.html