On this page
numpy.split
numpy.split(ary, indices_or_sections, axis=0)[source]-
Split an array into multiple sub-arrays.
Parameters: -
ary : ndarray -
Array to be divided into sub-arrays.
-
indices_or_sections : int or 1-D array -
If
indices_or_sectionsis an integer, N, the array will be divided into N equal arrays alongaxis. If such a split is not possible, an error is raised.If
indices_or_sectionsis a 1-D array of sorted integers, the entries indicate where alongaxisthe array is split. For example,[2, 3]would, foraxis=0, result in- ary[:2]
- ary[2:3]
- ary[3:]
If an index exceeds the dimension of the array along
axis, an empty sub-array is returned correspondingly. -
axis : int, optional -
The axis along which to split, default is 0.
Returns: -
sub-arrays : list of ndarrays -
A list of sub-arrays.
Raises: - ValueError
-
If
indices_or_sectionsis given as an integer, but a split does not result in equal division.
See also
array_split- Split an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception if an equal division cannot be made.
hsplit- Split array into multiple sub-arrays horizontally (column-wise).
vsplit- Split array into multiple sub-arrays vertically (row wise).
dsplit- Split array into multiple sub-arrays along the 3rd axis (depth).
concatenate- Join a sequence of arrays along an existing axis.
stack- Join a sequence of arrays along a new axis.
hstack- Stack arrays in sequence horizontally (column wise).
vstack- Stack arrays in sequence vertically (row wise).
dstack- Stack arrays in sequence depth wise (along third dimension).
Examples
>>> x = np.arange(9.0) >>> np.split(x, 3) [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]>>> x = np.arange(8.0) >>> np.split(x, [3, 5, 6, 10]) [array([0., 1., 2.]), array([3., 4.]), array([5.]), array([6., 7.]), array([], dtype=float64)] -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.split.html