On this page
numpy.tensordot
numpy.tensordot(a, b, axes=2)[source]-
Compute tensor dot product along specified axes.
Given two tensors,
aandb, and an array_like object containing two array_like objects,(a_axes, b_axes), sum the products ofa’s andb’s elements (components) over the axes specified bya_axesandb_axes. The third argument can be a single non-negative integer_like scalar,N; if it is such, then the lastNdimensions ofaand the firstNdimensions ofbare summed over.Parameters: -
a, b : array_like -
Tensors to “dot”.
-
axes : int or (2,) array_like -
- integer_like If an int N, sum over the last N axes of
aand the first N axes ofbin order. The sizes of the corresponding axes must match. - (2,) array_like Or, a list of axes to be summed over, first sequence applying to
a, second tob. Both elements array_like must be of the same length.
- integer_like If an int N, sum over the last N axes of
Returns: -
output : ndarray -
The tensor dot product of the input.
Notes
- Three common use cases are:
-
axes = 0: tensor productaxes = 1: tensor dot productaxes = 2: (default) tensor double contraction
When
axesis integer_like, the sequence for evaluation will be: first the -Nth axis inaand 0th axis inb, and the -1th axis inaand Nth axis inblast.When there is more than one axis to sum over - and they are not the last (first) axes of
a(b) - the argumentaxesshould consist of two sequences of the same length, with the first axis to sum over given first in both sequences, the second axis second, and so forth.Examples
A “traditional” example:
>>> a = np.arange(60.).reshape(3,4,5) >>> b = np.arange(24.).reshape(4,3,2) >>> c = np.tensordot(a,b, axes=([1,0],[0,1])) >>> c.shape (5, 2) >>> c array([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) >>> # A slower but equivalent way of computing the same... >>> d = np.zeros((5,2)) >>> for i in range(5): ... for j in range(2): ... for k in range(3): ... for n in range(4): ... d[i,j] += a[k,n,i] * b[n,k,j] >>> c == d array([[ True, True], [ True, True], [ True, True], [ True, True], [ True, True]])An extended example taking advantage of the overloading of + and *:
>>> a = np.array(range(1, 9)) >>> a.shape = (2, 2, 2) >>> A = np.array(('a', 'b', 'c', 'd'), dtype=object) >>> A.shape = (2, 2) >>> a; A array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) array([['a', 'b'], ['c', 'd']], dtype=object)>>> np.tensordot(a, A) # third argument default is 2 for double-contraction array(['abbcccdddd', 'aaaaabbbbbbcccccccdddddddd'], dtype=object)>>> np.tensordot(a, A, 1) array([[['acc', 'bdd'], ['aaacccc', 'bbbdddd']], [['aaaaacccccc', 'bbbbbdddddd'], ['aaaaaaacccccccc', 'bbbbbbbdddddddd']]], dtype=object)>>> np.tensordot(a, A, 0) # tensor product (result too long to incl.) array([[[[['a', 'b'], ['c', 'd']], ...>>> np.tensordot(a, A, (0, 1)) array([[['abbbbb', 'cddddd'], ['aabbbbbb', 'ccdddddd']], [['aaabbbbbbb', 'cccddddddd'], ['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object)>>> np.tensordot(a, A, (2, 1)) array([[['abb', 'cdd'], ['aaabbbb', 'cccdddd']], [['aaaaabbbbbb', 'cccccdddddd'], ['aaaaaaabbbbbbbb', 'cccccccdddddddd']]], dtype=object)>>> np.tensordot(a, A, ((0, 1), (0, 1))) array(['abbbcccccddddddd', 'aabbbbccccccdddddddd'], dtype=object)>>> np.tensordot(a, A, ((2, 1), (1, 0))) array(['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.tensordot.html