On this page
numpy.testing.assert_approx_equal
numpy.testing.assert_approx_equal(actual, desired, significant=7, err_msg='', verbose=True)[source]-
Raises an AssertionError if two items are not equal up to significant digits.
Note
It is recommended to use one of
assert_allclose,assert_array_almost_equal_nulporassert_array_max_ulpinstead of this function for more consistent floating point comparisons.Given two numbers, check that they are approximately equal. Approximately equal is defined as the number of significant digits that agree.
Parameters: -
actual : scalar -
The object to check.
-
desired : scalar -
The expected object.
-
significant : int, optional -
Desired precision, default is 7.
-
err_msg : str, optional -
The error message to be printed in case of failure.
-
verbose : bool, optional -
If True, the conflicting values are appended to the error message.
Raises: - AssertionError
-
If actual and desired are not equal up to specified precision.
See also
assert_allclose- Compare two array_like objects for equality with desired relative and/or absolute precision.
assert_array_almost_equal_nulp,assert_array_max_ulp,assert_equalExamples
>>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20) >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20, ... significant=8) >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20, ... significant=8) Traceback (most recent call last): ... AssertionError: Items are not equal to 8 significant digits: ACTUAL: 1.234567e-21 DESIRED: 1.2345672e-21the evaluated condition that raises the exception is
>>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1) True -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.testing.assert_approx_equal.html