On this page
numpy.trapz
numpy.trapz(y, x=None, dx=1.0, axis=-1)[source]-
Integrate along the given axis using the composite trapezoidal rule.
Integrate
y(x) along given axis.Parameters: -
y : array_like -
Input array to integrate.
-
x : array_like, optional -
The sample points corresponding to the
yvalues. Ifxis None, the sample points are assumed to be evenly spaceddxapart. The default is None. -
dx : scalar, optional -
The spacing between sample points when
xis None. The default is 1. -
axis : int, optional -
The axis along which to integrate.
Returns: -
trapz : float -
Definite integral as approximated by trapezoidal rule.
Notes
Image [2] illustrates trapezoidal rule – y-axis locations of points will be taken from
yarray, by default x-axis distances between points will be 1.0, alternatively they can be provided withxarray or withdxscalar. Return value will be equal to combined area under the red lines.References
[1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule [2] Illustration image: https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png Examples
>>> np.trapz([1,2,3]) 4.0 >>> np.trapz([1,2,3], x=[4,6,8]) 8.0 >>> np.trapz([1,2,3], dx=2) 8.0 >>> a = np.arange(6).reshape(2, 3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> np.trapz(a, axis=0) array([1.5, 2.5, 3.5]) >>> np.trapz(a, axis=1) array([2., 8.]) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.trapz.html