On this page
numpy.random.mtrand.RandomState.standard_normal
method
RandomState.standard_normal(size=None)-
Draw samples from a standard Normal distribution (mean=0, stdev=1).
Parameters: -
size : int or tuple of ints, optional -
Output shape. If the given shape is, e.g.,
(m, n, k), thenm * n * ksamples are drawn. Default is None, in which case a single value is returned.
Returns: -
out : float or ndarray -
A floating-point array of shape
sizeof drawn samples, or a single sample ifsizewas not specified.
See also
normal-
Equivalent function with additional
locandscalearguments for setting the mean and standard deviation.
Notes
For random samples from
, use one of:
mu + sigma * np.random.standard_normal(size=...) np.random.normal(mu, sigma, size=...)Examples
>>> np.random.standard_normal() 2.1923875335537315 #random>>> s = np.random.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = np.random.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2)Two-by-four array of samples from
:
>>> 3 + 2.5 * np.random.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/random/generated/numpy.random.mtrand.RandomState.standard_normal.html