On this page
numpy.testing.Tester.bench
method
Tester.bench(self, label='fast', verbose=1, extra_argv=None)
[source]-
Run benchmarks for module using nose.
- Parameters
-
label{‘fast’, ‘full’, ‘’, attribute identifier}, optional
-
Identifies the benchmarks to run. This can be a string to pass to the nosetests executable with the ‘-A’ option, or one of several special values. Special values are:
- ‘fast’ - the default - which corresponds to the
nosetests -A
option of ‘not slow’. - ‘full’ - fast (as above) and slow benchmarks as in the ‘no -A’ option to nosetests - this is the same as ‘’.
- None or ‘’ - run all tests.
- attribute_identifier - string passed directly to nosetests as ‘-A’.
- ‘fast’ - the default - which corresponds to the
verboseint, optional
-
Verbosity value for benchmark outputs, in the range 1-10. Default is 1.
extra_argvlist, optional
-
List with any extra arguments to pass to nosetests.
- Returns
-
successbool
-
Returns True if running the benchmarks works, False if an error occurred.
Notes
Benchmarks are like tests, but have names starting with “bench” instead of “test”, and can be found under the “benchmarks” sub-directory of the module.
Each NumPy module exposes
bench
in its namespace to run all benchmarks for it.Examples
>>> success = np.lib.bench() Running benchmarks for numpy.lib ... using 562341 items: unique: 0.11 unique1d: 0.11 ratio: 1.0 nUnique: 56230 == 56230 ... OK
>>> success True
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.18/reference/generated/numpy.testing.Tester.bench.html