On this page
numpy.ma.masked_object
numpy.ma.masked_object(x, value, copy=True, shrink=True)[source]-
Mask the array
xwhere the data are exactly equal to value.This function is similar to
masked_values, but only suitable for object arrays: for floating point, usemasked_valuesinstead.- Parameters
-
xarray_like-
Array to mask
valueobject-
Comparison value
copy{True, False}, optional-
Whether to return a copy of
x. shrink{True, False}, optional-
Whether to collapse a mask full of False to nomask
- Returns
-
resultMaskedArray-
The result of masking
xwhere equal tovalue.
See also
masked_where-
Mask where a condition is met.
masked_equal-
Mask where equal to a given value (integers).
masked_values-
Mask using floating point equality.
Examples
>>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> eat masked_array(data=[--, 'ham'], mask=[ True, False], fill_value='green_eggs', dtype=object) >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object)Note that
maskis set tonomaskif possible.>>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object)
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/generated/numpy.ma.masked_object.html