On this page
numpy.argmin
- numpy.argmin(a, axis=None, out=None)[source]
- 
    Returns the indices of the minimum values along an axis. - Parameters
- 
      - aarray_like
- 
        Input array. 
- axisint, optional
- 
        By default, the index is into the flattened array, otherwise along the specified axis. 
- outarray, optional
- 
        If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype. 
 
- Returns
- 
      - index_arrayndarray of ints
- 
        Array of indices into the array. It has the same shape as a.shapewith the dimension alongaxisremoved.
 
 See also - amin
- 
       The minimum value along a given axis. 
- unravel_index
- 
       Convert a flat index into an index tuple. 
- take_along_axis
- 
       Apply np.expand_dims(index_array, axis)from argmin to an array as if by calling min.
 NotesIn case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are returned. Examples>>> a = np.arange(6).reshape(2,3) + 10 >>> a array([[10, 11, 12], [13, 14, 15]]) >>> np.argmin(a) 0 >>> np.argmin(a, axis=0) array([0, 0, 0]) >>> np.argmin(a, axis=1) array([0, 0])Indices of the minimum elements of a N-dimensional array: >>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape) >>> ind (0, 0) >>> a[ind] 10>>> b = np.arange(6) + 10 >>> b[4] = 10 >>> b array([10, 11, 12, 13, 10, 15]) >>> np.argmin(b) # Only the first occurrence is returned. 0>>> x = np.array([[4,2,3], [1,0,3]]) >>> index_array = np.argmin(x, axis=-1) >>> # Same as np.min(x, axis=-1, keepdims=True) >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1) array([[2], [0]]) >>> # Same as np.max(x, axis=-1) >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1).squeeze(axis=-1) array([2, 0])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.argmin.html