On this page
numpy.array_equal
- numpy.array_equal(a1, a2, equal_nan=False)[source]
- 
    True if two arrays have the same shape and elements, False otherwise. - Parameters
- 
      - a1, a2array_like
- 
        Input arrays. 
- equal_nanbool
- 
        Whether to compare NaN’s as equal. If the dtype of a1 and a2 is complex, values will be considered equal if either the real or the imaginary component of a given value is nan.New in version 1.19.0. 
 
- Returns
- 
      - bbool
- 
        Returns True if the arrays are equal. 
 
 See also - allclose
- 
       Returns True if two arrays are element-wise equal within a tolerance. 
- array_equiv
- 
       Returns True if input arrays are shape consistent and all elements equal. 
 Examples>>> np.array_equal([1, 2], [1, 2]) True >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True >>> np.array_equal([1, 2], [1, 2, 3]) False >>> np.array_equal([1, 2], [1, 4]) False >>> a = np.array([1, np.nan]) >>> np.array_equal(a, a) False >>> np.array_equal(a, a, equal_nan=True) TrueWhen equal_nanis True, complex values with nan components are considered equal if either the real or the imaginary components are nan.>>> a = np.array([1 + 1j]) >>> b = a.copy() >>> a.real = np.nan >>> b.imag = np.nan >>> np.array_equal(a, b, equal_nan=True) True
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.array_equal.html