On this page
numpy.bitwise_or
- numpy.bitwise_or(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'bitwise_or'>
- 
    Compute the bit-wise OR of two arrays element-wise. Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator |.- Parameters
- 
      - x1, x2array_like
- 
        Only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output).
- outndarray, None, or tuple of ndarray and None, optional
- 
        A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. 
- wherearray_like, optional
- 
        This condition is broadcast over the input. At locations where the condition is True, the outarray will be set to the ufunc result. Elsewhere, theoutarray will retain its original value. Note that if an uninitializedoutarray is created via the defaultout=None, locations within it where the condition is False will remain uninitialized.
- **kwargs
- 
        For other keyword-only arguments, see the ufunc docs. 
 
- Returns
- 
      - outndarray or scalar
- 
        Result. This is a scalar if both x1andx2are scalars.
 
 See also logical_or,bitwise_and,bitwise_xor- binary_repr
- 
       Return the binary representation of the input number as a string. 
 ExamplesThe number 13 has the binaray representation 00001101. Likewise, 16 is represented by00010000. The bit-wise OR of 13 and 16 is then000111011, or 29:>>> np.bitwise_or(13, 16) 29 >>> np.binary_repr(29) '11101'>>> np.bitwise_or(32, 2) 34 >>> np.bitwise_or([33, 4], 1) array([33, 5]) >>> np.bitwise_or([33, 4], [1, 2]) array([33, 6])>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4])) array([ 6, 5, 255]) >>> np.array([2, 5, 255]) | np.array([4, 4, 4]) array([ 6, 5, 255]) >>> np.bitwise_or(np.array([2, 5, 255, 2147483647], dtype=np.int32), ... np.array([4, 4, 4, 2147483647], dtype=np.int32)) array([ 6, 5, 255, 2147483647]) >>> np.bitwise_or([True, True], [False, True]) array([ True, True])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.bitwise_or.html