On this page
numpy.find_common_type
- numpy.find_common_type(array_types, scalar_types)[source]
- 
    Determine common type following standard coercion rules. - Parameters
- 
      - array_typessequence
- 
        A list of dtypes or dtype convertible objects representing arrays. 
- scalar_typessequence
- 
        A list of dtypes or dtype convertible objects representing scalars. 
 
- Returns
- 
      - datatypedtype
- 
        The common data type, which is the maximum of array_typesignoringscalar_types, unless the maximum ofscalar_typesis of a different kind (dtype.kind). If the kind is not understood, then None is returned.
 
 See also Examples>>> np.find_common_type([], [np.int64, np.float32, complex]) dtype('complex128') >>> np.find_common_type([np.int64, np.float32], []) dtype('float64')The standard casting rules ensure that a scalar cannot up-cast an array unless the scalar is of a fundamentally different kind of data (i.e. under a different hierarchy in the data type hierarchy) then the array: >>> np.find_common_type([np.float32], [np.int64, np.float64]) dtype('float32')Complex is of a different type, so it up-casts the float in the array_typesargument:>>> np.find_common_type([np.float32], [complex]) dtype('complex128')Type specifier strings are convertible to dtypes and can therefore be used instead of dtypes: >>> np.find_common_type(['f4', 'f4', 'i4'], ['c8']) dtype('complex128')
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.find_common_type.html