On this page
numpy.full_like
- numpy.full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None)[source]
- 
    Return a full array with the same shape and type as a given array. - Parameters
- 
      - aarray_like
- 
        The shape and data-type of adefine these same attributes of the returned array.
- fill_valuescalar
- 
        Fill value. 
- dtypedata-type, optional
- 
        Overrides the data type of the result. 
- order{‘C’, ‘F’, ‘A’, or ‘K’}, optional
- 
        Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if ais Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout ofaas closely as possible.
- subokbool, optional.
- 
        If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True. 
- shapeint or sequence of ints, optional.
- 
        Overrides the shape of the result. If order=’K’ and the number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied. New in version 1.17.0. 
 
- Returns
- 
      - outndarray
- 
        Array of fill_valuewith the same shape and type asa.
 
 See also - empty_like
- 
       Return an empty array with shape and type of input. 
- ones_like
- 
       Return an array of ones with shape and type of input. 
- zeros_like
- 
       Return an array of zeros with shape and type of input. 
- full
- 
       Return a new array of given shape filled with value. 
 Examples>>> x = np.arange(6, dtype=int) >>> np.full_like(x, 1) array([1, 1, 1, 1, 1, 1]) >>> np.full_like(x, 0.1) array([0, 0, 0, 0, 0, 0]) >>> np.full_like(x, 0.1, dtype=np.double) array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) >>> np.full_like(x, np.nan, dtype=np.double) array([nan, nan, nan, nan, nan, nan])>>> y = np.arange(6, dtype=np.double) >>> np.full_like(y, 0.1) array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.full_like.html