On this page
numpy.intersect1d
- numpy.intersect1d(ar1, ar2, assume_unique=False, return_indices=False)[source]
- 
    Find the intersection of two arrays. Return the sorted, unique values that are in both of the input arrays. - Parameters
- 
      - ar1, ar2array_like
- 
        Input arrays. Will be flattened if not already 1D. 
- assume_uniquebool
- 
        If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. 
- return_indicesbool
- 
        If True, the indices which correspond to the intersection of the two arrays are returned. The first instance of a value is used if there are multiple. Default is False. New in version 1.15.0. 
 
- Returns
- 
      - intersect1dndarray
- 
        Sorted 1D array of common and unique elements. 
- comm1ndarray
- 
        The indices of the first occurrences of the common values in ar1. Only provided ifreturn_indicesis True.
- comm2ndarray
- 
        The indices of the first occurrences of the common values in ar2. Only provided ifreturn_indicesis True.
 
 See also - numpy.lib.arraysetops
- 
       Module with a number of other functions for performing set operations on arrays. 
 Examples>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1]) array([1, 3])To intersect more than two arrays, use functools.reduce: >>> from functools import reduce >>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2])) array([3])To return the indices of the values common to the input arrays along with the intersected values: >>> x = np.array([1, 1, 2, 3, 4]) >>> y = np.array([2, 1, 4, 6]) >>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True) >>> x_ind, y_ind (array([0, 2, 4]), array([1, 0, 2])) >>> xy, x[x_ind], y[y_ind] (array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.intersect1d.html