On this page
numpy.linalg.cholesky
- numpy.linalg.cholesky(a)[source]
- 
    Cholesky decomposition. Return the Cholesky decomposition, L * L.H, of the square matrixa, whereLis lower-triangular and .H is the conjugate transpose operator (which is the ordinary transpose ifais real-valued).amust be Hermitian (symmetric if real-valued) and positive-definite. No checking is performed to verify whetherais Hermitian or not. In addition, only the lower-triangular and diagonal elements ofaare used. OnlyLis actually returned.- Parameters
- 
      - a(…, M, M) array_like
- 
        Hermitian (symmetric if all elements are real), positive-definite input matrix. 
 
- Returns
- 
      - L(…, M, M) array_like
- 
        Upper or lower-triangular Cholesky factor of a. Returns a matrix object ifais a matrix object.
 
- Raises
- 
      - LinAlgError
- 
        If the decomposition fails, for example, if ais not positive-definite.
 
 See also - scipy.linalg.cholesky
- 
       Similar function in SciPy. 
- scipy.linalg.cholesky_banded
- 
       Cholesky decompose a banded Hermitian positive-definite matrix. 
- scipy.linalg.cho_factor
- 
       Cholesky decomposition of a matrix, to use in scipy.linalg.cho_solve.
 NotesNew in version 1.8.0. Broadcasting rules apply, see the numpy.linalgdocumentation for details.The Cholesky decomposition is often used as a fast way of solving (when Ais both Hermitian/symmetric and positive-definite).First, we solve for in and then for in Examples>>> A = np.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = np.linalg.cholesky(A) >>> L array([[1.+0.j, 0.+0.j], [0.+2.j, 1.+0.j]]) >>> np.dot(L, L.T.conj()) # verify that L * L.H = A array([[1.+0.j, 0.-2.j], [0.+2.j, 5.+0.j]]) >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? >>> np.linalg.cholesky(A) # an ndarray object is returned array([[1.+0.j, 0.+0.j], [0.+2.j, 1.+0.j]]) >>> # But a matrix object is returned if A is a matrix object >>> np.linalg.cholesky(np.matrix(A)) matrix([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.linalg.cholesky.html