On this page
numpy.linalg.eigvals
- numpy.linalg.eigvals(a)[source]
- 
    Compute the eigenvalues of a general matrix. Main difference between eigvalsandeig: the eigenvectors aren’t returned.- Parameters
- 
      - a(…, M, M) array_like
- 
        A complex- or real-valued matrix whose eigenvalues will be computed. 
 
- Returns
- 
      - w(…, M,) ndarray
- 
        The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. 
 
- Raises
- 
      - LinAlgError
- 
        If the eigenvalue computation does not converge. 
 
 See also - eig
- 
       eigenvalues and right eigenvectors of general arrays 
- eigvalsh
- 
       eigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays. 
- eigh
- 
       eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays. 
- scipy.linalg.eigvals
- 
       Similar function in SciPy. 
 NotesNew in version 1.8.0. Broadcasting rules apply, see the numpy.linalgdocumentation for details.This is implemented using the _geevLAPACK routines which compute the eigenvalues and eigenvectors of general square arrays.ExamplesIllustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, Q, and on the right byQ.T(the transpose ofQ), preserves the eigenvalues of the “middle” matrix. In other words, ifQis orthogonal, thenQ * A * Q.Thas the same eigenvalues asA:>>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0)Now multiply a diagonal matrix by Qon one side and byQ.Ton the other:>>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) # random
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.linalg.eigvals.html