On this page
numpy.linalg.inv
- numpy.linalg.inv(a)[source]
- 
    Compute the (multiplicative) inverse of a matrix. Given a square matrix a, return the matrixainvsatisfyingdot(a, ainv) = dot(ainv, a) = eye(a.shape[0]).- Parameters
- 
      - a(…, M, M) array_like
- 
        Matrix to be inverted. 
 
- Returns
- 
      - ainv(…, M, M) ndarray or matrix
- 
        (Multiplicative) inverse of the matrix a.
 
- Raises
- 
      - LinAlgError
- 
        If ais not square or inversion fails.
 
 See also - scipy.linalg.inv
- 
       Similar function in SciPy. 
 NotesNew in version 1.8.0. Broadcasting rules apply, see the numpy.linalgdocumentation for details.Examples>>> from numpy.linalg import inv >>> a = np.array([[1., 2.], [3., 4.]]) >>> ainv = inv(a) >>> np.allclose(np.dot(a, ainv), np.eye(2)) True >>> np.allclose(np.dot(ainv, a), np.eye(2)) TrueIf a is a matrix object, then the return value is a matrix as well: >>> ainv = inv(np.matrix(a)) >>> ainv matrix([[-2. , 1. ], [ 1.5, -0.5]])Inverses of several matrices can be computed at once: >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) >>> inv(a) array([[[-2. , 1. ], [ 1.5 , -0.5 ]], [[-1.25, 0.75], [ 0.75, -0.25]]])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.linalg.inv.html