On this page
numpy.linalg.solve
- numpy.linalg.solve(a, b)[source]
- 
    Solve a linear matrix equation, or system of linear scalar equations. Computes the “exact” solution, x, of the well-determined, i.e., full rank, linear matrix equationax = b.- Parameters
- 
      - a(…, M, M) array_like
- 
        Coefficient matrix. 
- b{(…, M,), (…, M, K)}, array_like
- 
        Ordinate or “dependent variable” values. 
 
- Returns
- 
      - x{(…, M,), (…, M, K)} ndarray
- 
        Solution to the system a x = b. Returned shape is identical to b.
 
- Raises
- 
      - LinAlgError
- 
        If ais singular or not square.
 
 See also - scipy.linalg.solve
- 
       Similar function in SciPy. 
 NotesNew in version 1.8.0. Broadcasting rules apply, see the numpy.linalgdocumentation for details.The solutions are computed using LAPACK routine _gesv.amust be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, uselstsqfor the least-squares best “solution” of the system/equation.References- 1
- 
      G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22. 
 ExamplesSolve the system of equations 3 * x0 + x1 = 9andx0 + 2 * x1 = 8:>>> a = np.array([[3,1], [1,2]]) >>> b = np.array([9,8]) >>> x = np.linalg.solve(a, b) >>> x array([2., 3.])Check that the solution is correct: >>> np.allclose(np.dot(a, x), b) True
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.linalg.solve.html