On this page
numpy.ma.array
- numpy.ma.array(data, dtype=None, copy=False, order=None, mask=False, fill_value=None, keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)[source]
- 
    An array class with possibly masked values. Masked values of True exclude the corresponding element from any computation. Construction: x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True, ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, shrink=True, order=None)- Parameters
- 
      - dataarray_like
- 
        Input data. 
- masksequence, optional
- 
        Mask. Must be convertible to an array of booleans with the same shape as data. True indicates a masked (i.e. invalid) data.
- dtypedtype, optional
- 
        Data type of the output. If dtypeis None, the type of the data argument (data.dtype) is used. Ifdtypeis not None and different fromdata.dtype, a copy is performed.
- copybool, optional
- 
        Whether to copy the input data (True), or to use a reference instead. Default is False. 
- subokbool, optional
- 
        Whether to return a subclass of MaskedArrayif possible (True) or a plainMaskedArray. Default is True.
- ndminint, optional
- 
        Minimum number of dimensions. Default is 0. 
- fill_valuescalar, optional
- 
        Value used to fill in the masked values when necessary. If None, a default based on the data-type is used. 
- keep_maskbool, optional
- 
        Whether to combine maskwith the mask of the input data, if any (True), or to use onlymaskfor the output (False). Default is True.
- hard_maskbool, optional
- 
        Whether to use a hard mask or not. With a hard mask, masked values cannot be unmasked. Default is False. 
- shrinkbool, optional
- 
        Whether to force compression of an empty mask. Default is True. 
- order{‘C’, ‘F’, ‘A’}, optional
- 
        Specify the order of the array. If order is ‘C’, then the array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’ (default), then the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous), unless a copy is required, in which case it will be C-contiguous. 
 
 ExamplesThe maskcan be initialized with an array of boolean values with the same shape asdata.>>> data = np.arange(6).reshape((2, 3)) >>> np.ma.MaskedArray(data, mask=[[False, True, False], ... [False, False, True]]) masked_array( data=[[0, --, 2], [3, 4, --]], mask=[[False, True, False], [False, False, True]], fill_value=999999)Alternatively, the maskcan be initialized to homogeneous boolean array with the same shape asdataby passing in a scalar boolean value:>>> np.ma.MaskedArray(data, mask=False) masked_array( data=[[0, 1, 2], [3, 4, 5]], mask=[[False, False, False], [False, False, False]], fill_value=999999)>>> np.ma.MaskedArray(data, mask=True) masked_array( data=[[--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True]], fill_value=999999, dtype=int64)Note The recommended practice for initializing maskwith a scalar boolean value is to useTrue/Falserather thannp.True_/np.False_. The reason isnomaskis represented internally asnp.False_.>>> np.False_ is np.ma.nomask True
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.ma.array.html