On this page
numpy.ma.clip
- numpy.ma.clip(a, a_min, a_max, out=None, **kwargs)[source]
- 
    Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [0, 1]is specified, values smaller than 0 become 0, and values larger than 1 become 1.Equivalent to but faster than np.minimum(a_max, np.maximum(a, a_min)).No check is performed to ensure a_min < a_max.- Parameters
- 
      - aarray_like
- 
        Array containing elements to clip. 
- a_minscalar or array_like or None
- 
        Minimum value. If None, clipping is not performed on lower interval edge. Not more than one of a_minanda_maxmay be None.
- a_maxscalar or array_like or None
- 
        Maximum value. If None, clipping is not performed on upper interval edge. Not more than one of a_minanda_maxmay be None. Ifa_minora_maxare array_like, then the three arrays will be broadcasted to match their shapes.
- outndarray, optional
- 
        The results will be placed in this array. It may be the input array for in-place clipping. outmust be of the right shape to hold the output. Its type is preserved.
- **kwargs
- 
        For other keyword-only arguments, see the ufunc docs. New in version 1.17.0. 
 
- Returns
- 
      - clipped_arrayndarray
- 
        An array with the elements of a, but where values <a_minare replaced witha_min, and those >a_maxwitha_max.
 
 See also ufuncs-output-typeExamples>>> a = np.arange(10) >>> np.clip(a, 1, 8) array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, 3, 6, out=a) array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8) array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.ma.clip.html