On this page
numpy.ma.indices
- numpy.ma.indices(dimensions, dtype=<class 'int'>, sparse=False)[source]
- 
    Return an array representing the indices of a grid. Compute an array where the subarrays contain index values 0, 1, … varying only along the corresponding axis. - Parameters
- 
      - dimensionssequence of ints
- 
        The shape of the grid. 
- dtypedtype, optional
- 
        Data type of the result. 
- sparseboolean, optional
- 
        Return a sparse representation of the grid instead of a dense representation. Default is False. New in version 1.17. 
 
- Returns
- 
      - gridone ndarray or tuple of ndarrays
- 
        - If sparse is False:
- 
          Returns one array of grid indices, grid.shape = (len(dimensions),) + tuple(dimensions).
- If sparse is True:
- 
          Returns a tuple of arrays, with grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1)with dimensions[i] in the ith place
 
 
 See also mgrid,ogrid,meshgridNotesThe output shape in the dense case is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if dimensionsis a tuple(r0, ..., rN-1)of lengthN, the output shape is(N, r0, ..., rN-1).The subarrays grid[k]contains the N-D array of indices along thek-thaxis. Explicitly:grid[k, i0, i1, ..., iN-1] = ikExamples>>> grid = np.indices((2, 3)) >>> grid.shape (2, 2, 3) >>> grid[0] # row indices array([[0, 0, 0], [1, 1, 1]]) >>> grid[1] # column indices array([[0, 1, 2], [0, 1, 2]])The indices can be used as an index into an array. >>> x = np.arange(20).reshape(5, 4) >>> row, col = np.indices((2, 3)) >>> x[row, col] array([[0, 1, 2], [4, 5, 6]])Note that it would be more straightforward in the above example to extract the required elements directly with x[:2, :3].If sparse is set to true, the grid will be returned in a sparse representation. >>> i, j = np.indices((2, 3), sparse=True) >>> i.shape (2, 1) >>> j.shape (1, 3) >>> i # row indices array([[0], [1]]) >>> j # column indices array([[0, 1, 2]])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.ma.indices.html