On this page
numpy.ma.innerproduct
- numpy.ma.innerproduct(a, b)[source]
- 
    Inner product of two arrays. Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes. - Parameters
- 
      - a, barray_like
- 
        If aandbare nonscalar, their last dimensions must match.
 
- Returns
- 
      - outndarray
- 
        out.shape = a.shape[:-1] + b.shape[:-1]
 
- Raises
- 
      - ValueError
- 
        If the last dimension of aandbhas different size.
 
 See also - tensordot
- 
       Sum products over arbitrary axes. 
- dot
- 
       Generalised matrix product, using second last dimension of b.
- einsum
- 
       Einstein summation convention. 
 NotesMasked values are replaced by 0. For vectors (1-D arrays) it computes the ordinary inner-product: np.inner(a, b) = sum(a[:]*b[:])More generally, if ndim(a) = r > 0andndim(b) = s > 0:np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))or explicitly: np.inner(a, b)[i0,...,ir-1,j0,...,js-1] = sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])In addition aorbmay be scalars, in which case:np.inner(a,b) = a*bExamplesOrdinary inner product for vectors: >>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) 2A multidimensional example: >>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> np.inner(a, b) array([[ 14, 38, 62], [ 86, 110, 134]])An example where bis a scalar:>>> np.inner(np.eye(2), 7) array([[7., 0.], [0., 7.]])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.ma.innerproduct.html