On this page
numpy.ma.is_mask
- numpy.ma.is_mask(m)[source]
- 
    Return True if m is a valid, standard mask. This function does not check the contents of the input, only that the type is MaskType. In particular, this function returns False if the mask has a flexible dtype. - Parameters
- 
      - marray_like
- 
        Array to test. 
 
- Returns
- 
      - resultbool
- 
        True if m.dtype.typeis MaskType, False otherwise.
 
 See also - isMaskedArray
- 
       Test whether input is an instance of MaskedArray. 
 Examples>>> import numpy.ma as ma >>> m = ma.masked_equal([0, 1, 0, 2, 3], 0) >>> m masked_array(data=[--, 1, --, 2, 3], mask=[ True, False, True, False, False], fill_value=0) >>> ma.is_mask(m) False >>> ma.is_mask(m.mask) TrueInput must be an ndarray (or have similar attributes) for it to be considered a valid mask. >>> m = [False, True, False] >>> ma.is_mask(m) False >>> m = np.array([False, True, False]) >>> m array([False, True, False]) >>> ma.is_mask(m) TrueArrays with complex dtypes don’t return True. >>> dtype = np.dtype({'names':['monty', 'pithon'], ... 'formats':[bool, bool]}) >>> dtype dtype([('monty', '|b1'), ('pithon', '|b1')]) >>> m = np.array([(True, False), (False, True), (True, False)], ... dtype=dtype) >>> m array([( True, False), (False, True), ( True, False)], dtype=[('monty', '?'), ('pithon', '?')]) >>> ma.is_mask(m) False
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.ma.is_mask.html