On this page
numpy.ma.make_mask
- numpy.ma.make_mask(m, copy=False, shrink=True, dtype=<class 'numpy.bool_'>)[source]
- 
    Create a boolean mask from an array. Return mas a boolean mask, creating a copy if necessary or requested. The function can accept any sequence that is convertible to integers, ornomask. Does not require that contents must be 0s and 1s, values of 0 are interpreted as False, everything else as True.- Parameters
- 
      - marray_like
- 
        Potential mask. 
- copybool, optional
- 
        Whether to return a copy of m(True) ormitself (False).
- shrinkbool, optional
- 
        Whether to shrink mtonomaskif all its values are False.
- dtypedtype, optional
- 
        Data-type of the output mask. By default, the output mask has a dtype of MaskType (bool). If the dtype is flexible, each field has a boolean dtype. This is ignored when misnomask, in which casenomaskis always returned.
 
- Returns
- 
      - resultndarray
- 
        A boolean mask derived from m.
 
 Examples>>> import numpy.ma as ma >>> m = [True, False, True, True] >>> ma.make_mask(m) array([ True, False, True, True]) >>> m = [1, 0, 1, 1] >>> ma.make_mask(m) array([ True, False, True, True]) >>> m = [1, 0, 2, -3] >>> ma.make_mask(m) array([ True, False, True, True])Effect of the shrinkparameter.>>> m = np.zeros(4) >>> m array([0., 0., 0., 0.]) >>> ma.make_mask(m) False >>> ma.make_mask(m, shrink=False) array([False, False, False, False])Using a flexible dtype.>>> m = [1, 0, 1, 1] >>> n = [0, 1, 0, 0] >>> arr = [] >>> for man, mouse in zip(m, n): ... arr.append((man, mouse)) >>> arr [(1, 0), (0, 1), (1, 0), (1, 0)] >>> dtype = np.dtype({'names':['man', 'mouse'], ... 'formats':[np.int64, np.int64]}) >>> arr = np.array(arr, dtype=dtype) >>> arr array([(1, 0), (0, 1), (1, 0), (1, 0)], dtype=[('man', '<i8'), ('mouse', '<i8')]) >>> ma.make_mask(arr, dtype=dtype) array([(True, False), (False, True), (True, False), (True, False)], dtype=[('man', '|b1'), ('mouse', '|b1')])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.ma.make_mask.html