On this page
numpy.ma.outer
- numpy.ma.outer(a, b)[source]
- 
    Compute the outer product of two vectors. Given two vectors, a = [a0, a1, ..., aM]andb = [b0, b1, ..., bN], the outer product [1] is:[[a0*b0 a0*b1 ... a0*bN ] [a1*b0 . [ ... . [aM*b0 aM*bN ]]- Parameters
- 
      - a(M,) array_like
- 
        First input vector. Input is flattened if not already 1-dimensional. 
- b(N,) array_like
- 
        Second input vector. Input is flattened if not already 1-dimensional. 
- out(M, N) ndarray, optional
- 
        A location where the result is stored New in version 1.9.0. 
 
- Returns
- 
      - out(M, N) ndarray
- 
        out[i, j] = a[i] * b[j]
 
 See also - einsum
- 
       einsum('i,j->ij', a.ravel(), b.ravel())is the equivalent.
- ufunc.outer
- 
       A generalization to dimensions other than 1D and other operations. np.multiply.outer(a.ravel(), b.ravel())is the equivalent.
- tensordot
- 
       np.tensordot(a.ravel(), b.ravel(), axes=((), ()))is the equivalent.
 NotesMasked values are replaced by 0. References- 1
- 
      : G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Baltimore, MD, Johns Hopkins University Press, 1996, pg. 8. 
 ExamplesMake a (very coarse) grid for computing a Mandelbrot set: >>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5)) >>> rl array([[-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.]]) >>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,))) >>> im array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j], [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j], [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j], [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]]) >>> grid = rl + im >>> grid array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j], [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j], [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j], [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j], [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])An example using a “vector” of letters: >>> x = np.array(['a', 'b', 'c'], dtype=object) >>> np.outer(x, [1, 2, 3]) array([['a', 'aa', 'aaa'], ['b', 'bb', 'bbb'], ['c', 'cc', 'ccc']], dtype=object)
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.ma.outer.html