On this page
numpy.matlib.randn
- numpy.matlib.randn(*args)[source]
- 
    Return a random matrix with data from the “standard normal” distribution. randngenerates a matrix filled with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1.- Parameters
- 
      - *argsArguments
- 
        Shape of the output. If given as N integers, each integer specifies the size of one dimension. If given as a tuple, this tuple gives the complete shape. 
 
- Returns
- 
      - Zmatrix of floats
- 
        A matrix of floating-point samples drawn from the standard normal distribution. 
 
 See also NotesFor random samples from , use: sigma * np.matlib.randn(...) + muExamples>>> np.random.seed(123) >>> import numpy.matlib >>> np.matlib.randn(1) matrix([[-1.0856306]]) >>> np.matlib.randn(1, 2, 3) matrix([[ 0.99734545, 0.2829785 , -1.50629471], [-0.57860025, 1.65143654, -2.42667924]])Two-by-four matrix of samples from : >>> 2.5 * np.matlib.randn((2, 4)) + 3 matrix([[1.92771843, 6.16484065, 0.83314899, 1.30278462], [2.76322758, 6.72847407, 1.40274501, 1.8900451 ]])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.matlib.randn.html