On this page
numpy.poly1d
- class numpy.poly1d(c_or_r, r=False, variable=None)[source]
- 
    A one-dimensional polynomial class. A convenience class, used to encapsulate “natural” operations on polynomials so that said operations may take on their customary form in code (see Examples). - Parameters
- 
      - c_or_rarray_like
- 
        The polynomial’s coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial’s roots (values where the polynomial evaluates to 0). For example, poly1d([1, 2, 3])returns an object that represents, whereas poly1d([1, 2, 3], True)returns one that represents. 
- rbool, optional
- 
        If True, c_or_rspecifies the polynomial’s roots; the default is False.
- variablestr, optional
- 
        Changes the variable used when printing pfromxtovariable(see Examples).
 
 ExamplesConstruct the polynomial : >>> p = np.poly1d([1, 2, 3]) >>> print(np.poly1d(p)) 2 1 x + 2 x + 3Evaluate the polynomial at : >>> p(0.5) 4.25Find the roots: >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) # may varyThese numbers in the previous line represent (0, 0) to machine precision Show the coefficients: >>> p.c array([1, 2, 3])Display the order (the leading zero-coefficients are removed): >>> p.order 2Show the coefficient of the k-th power in the polynomial (which is equivalent to p.c[-(i+1)]):>>> p[1] 2Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): >>> p * p poly1d([ 1, 4, 10, 12, 9])>>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([4.]))asarray(p)gives the coefficient array, so polynomials can be used in all functions that accept arrays:>>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9])>>> np.square(p) # square of individual coefficients array([1, 4, 9])The variable used in the string representation of pcan be modified, using thevariableparameter:>>> p = np.poly1d([1,2,3], variable='z') >>> print(p) 2 1 z + 2 z + 3Construct a polynomial from its roots: >>> np.poly1d([1, 2], True) poly1d([ 1., -3., 2.])This is the same polynomial as obtained by: >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2])- Attributes
- 
      - c
- 
        The polynomial coefficients 
- coef
- 
        The polynomial coefficients 
- coefficients
- 
        The polynomial coefficients 
- coeffs
- 
        The polynomial coefficients 
- o
- 
        The order or degree of the polynomial 
- order
- 
        The order or degree of the polynomial 
- r
- 
        The roots of the polynomial, where self(x) == 0 
- roots
- 
        The roots of the polynomial, where self(x) == 0 
- variable
- 
        The name of the polynomial variable 
 
 Methods
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.poly1d.html