On this page
numpy.polynomial.chebyshev.chebfromroots
- numpy.polynomial.chebyshev.chebfromroots(roots)[source]
- 
    Generate a Chebyshev series with given roots. The function returns the coefficients of the polynomial in Chebyshev form, where the r_nare the roots specified inroots. If a zero has multiplicity n, then it must appear inrootsn times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, thenrootslooks something like [2, 2, 2, 3, 3]. The roots can appear in any order.If the returned coefficients are c, thenThe coefficient of the last term is not generally 1 for monic polynomials in Chebyshev form. - Parameters
- 
      - rootsarray_like
- 
        Sequence containing the roots. 
 
- Returns
- 
      - outndarray
- 
        1-D array of coefficients. If all roots are real then outis a real array, if some of the roots are complex, thenoutis complex even if all the coefficients in the result are real (see Examples below).
 
 See also polyfromroots,legfromroots,lagfromroots,hermfromroots,hermefromrootsExamples>>> import numpy.polynomial.chebyshev as C >>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis array([ 0. , -0.25, 0. , 0.25]) >>> j = complex(0,1) >>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis array([1.5+0.j, 0. +0.j, 0.5+0.j])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.polynomial.chebyshev.chebfromroots.html