On this page
numpy.polynomial.hermite_e.hermeder
- numpy.polynomial.hermite_e.hermeder(c, m=1, scl=1, axis=0)[source]
- 
    Differentiate a Hermite_e series. Returns the series coefficients cdifferentiatedmtimes alongaxis. At each iteration the result is multiplied byscl(the scaling factor is for use in a linear change of variable). The argumentcis an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series1*He_0 + 2*He_1 + 3*He_2while [[1,2],[1,2]] represents1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y) + 2*He_0(x)*He_1(y) + 2*He_1(x)*He_1(y)if axis=0 isxand axis=1 isy.- Parameters
- 
      - carray_like
- 
        Array of Hermite_e series coefficients. If cis multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index.
- mint, optional
- 
        Number of derivatives taken, must be non-negative. (Default: 1) 
- sclscalar, optional
- 
        Each differentiation is multiplied by scl. The end result is multiplication byscl**m. This is for use in a linear change of variable. (Default: 1)
- axisint, optional
- 
        Axis over which the derivative is taken. (Default: 0). New in version 1.7.0. 
 
- Returns
- 
      - derndarray
- 
        Hermite series of the derivative. 
 
 See also NotesIn general, the result of differentiating a Hermite series does not resemble the same operation on a power series. Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below. Examples>>> from numpy.polynomial.hermite_e import hermeder >>> hermeder([ 1., 1., 1., 1.]) array([1., 2., 3.]) >>> hermeder([-0.25, 1., 1./2., 1./3., 1./4 ], m=2) array([1., 2., 3.])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.polynomial.hermite_e.hermeder.html