On this page
numpy.polynomial.legendre.legfromroots
- numpy.polynomial.legendre.legfromroots(roots)[source]
- 
    Generate a Legendre series with given roots. The function returns the coefficients of the polynomial in Legendre form, where the r_nare the roots specified inroots. If a zero has multiplicity n, then it must appear inrootsn times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, thenrootslooks something like [2, 2, 2, 3, 3]. The roots can appear in any order.If the returned coefficients are c, thenThe coefficient of the last term is not generally 1 for monic polynomials in Legendre form. - Parameters
- 
      - rootsarray_like
- 
        Sequence containing the roots. 
 
- Returns
- 
      - outndarray
- 
        1-D array of coefficients. If all roots are real then outis a real array, if some of the roots are complex, thenoutis complex even if all the coefficients in the result are real (see Examples below).
 
 See also polyfromroots,chebfromroots,lagfromroots,hermfromroots,hermefromrootsExamples>>> import numpy.polynomial.legendre as L >>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis array([ 0. , -0.4, 0. , 0.4]) >>> j = complex(0,1) >>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis array([ 1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j]) # may vary
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.polynomial.legendre.legfromroots.html