On this page
numpy.polynomial.legendre.legtrim
- numpy.polynomial.legendre.legtrim(c, tol=0)[source]
- 
    Remove “small” “trailing” coefficients from a polynomial. “Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order coefficient(s), e.g., in[0, 1, 1, 0, 0](which represents0 + x + x**2 + 0*x**3 + 0*x**4) both the 3-rd and 4-th order coefficients would be “trimmed.”- Parameters
- 
      - carray_like
- 
        1-d array of coefficients, ordered from lowest order to highest. 
- tolnumber, optional
- 
        Trailing (i.e., highest order) elements with absolute value less than or equal to tol(default value is zero) are removed.
 
- Returns
- 
      - trimmedndarray
- 
        1-d array with trailing zeros removed. If the resulting series would be empty, a series containing a single zero is returned. 
 
- Raises
- 
      - ValueError
- 
        If tol< 0
 
 See also trimseqExamples>>> from numpy.polynomial import polyutils as pu >>> pu.trimcoef((0,0,3,0,5,0,0)) array([0., 0., 3., 0., 5.]) >>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed array([0.]) >>> i = complex(0,1) # works for complex >>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3) array([0.0003+0.j , 0.001 -0.001j])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.polynomial.legendre.legtrim.html