On this page
numpy.random.exponential
- numpy.random.exponential(scale=1.0, size=None)
- 
    Draw samples from an exponential distribution. Its probability density function is for x > 0and 0 elsewhere.is the scale parameter, which is the inverse of the rate parameter . The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests to Wikipedia [2]. Note New code should use the exponentialmethod of adefault_rng()instance instead; seerandom-quick-start.- Parameters
- 
      - scalefloat or array_like of floats
- 
        The scale parameter, . Must be non-negative. 
- sizeint or tuple of ints, optional
- 
        Output shape. If the given shape is, e.g., (m, n, k), thenm * n * ksamples are drawn. If size isNone(default), a single value is returned ifscaleis a scalar. Otherwise,np.array(scale).sizesamples are drawn.
 
- Returns
- 
      - outndarray or scalar
- 
        Drawn samples from the parameterized exponential distribution. 
 
 See also - Generator.exponential
- 
       which should be used for new code. 
 References- 1
- 
      Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57. 
- 2
- 
      Wikipedia, “Poisson process”, https://en.wikipedia.org/wiki/Poisson_process 
- 3
- 
      Wikipedia, “Exponential distribution”, https://en.wikipedia.org/wiki/Exponential_distribution 
 
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/random/generated/numpy.random.exponential.html