On this page
numpy.random.Generator.power
method
- Generator.power(a, size=None)
- 
    Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. - Parameters
- 
      - afloat or array_like of floats
- 
        Parameter of the distribution. Must be non-negative. 
- sizeint or tuple of ints, optional
- 
        Output shape. If the given shape is, e.g., (m, n, k), thenm * n * ksamples are drawn. If size isNone(default), a single value is returned ifais a scalar. Otherwise,np.array(a).sizesamples are drawn.
 
- Returns
- 
      - outndarray or scalar
- 
        Drawn samples from the parameterized power distribution. 
 
- Raises
- 
      - ValueError
- 
        If a < 1. 
 
 NotesThe probability density function is The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References- 1
- 
      Christian Kleiber, Samuel Kotz, “Statistical size distributions in economics and actuarial sciences”, Wiley, 2003. 
- 2
- 
      Heckert, N. A. and Filliben, James J. “NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions”, National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf 
 ExamplesDraw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples)Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show()Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5)>>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('power(5)')>>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('inverse of 1 + Generator.pareto(5)')>>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('inverse of stats.pareto(5)')
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/random/generated/numpy.random.Generator.power.html