On this page
numpy.random.noncentral_chisquare
- numpy.random.noncentral_chisquare(df, nonc, size=None)
- 
    Draw samples from a noncentral chi-square distribution. The noncentral distribution is a generalization of the distribution. Note New code should use the noncentral_chisquaremethod of adefault_rng()instance instead; seerandom-quick-start.- Parameters
- 
      - dffloat or array_like of floats
- 
        Degrees of freedom, must be > 0. Changed in version 1.10.0: Earlier NumPy versions required dfnum > 1. 
- noncfloat or array_like of floats
- 
        Non-centrality, must be non-negative. 
- sizeint or tuple of ints, optional
- 
        Output shape. If the given shape is, e.g., (m, n, k), thenm * n * ksamples are drawn. If size isNone(default), a single value is returned ifdfandnoncare both scalars. Otherwise,np.broadcast(df, nonc).sizesamples are drawn.
 
- Returns
- 
      - outndarray or scalar
- 
        Drawn samples from the parameterized noncentral chi-square distribution. 
 
 See also - Generator.noncentral_chisquare
- 
       which should be used for new code. 
 NotesThe probability density function for the noncentral Chi-square distribution is where is the Chi-square with q degrees of freedom. References- 1
- 
      Wikipedia, “Noncentral chi-squared distribution” https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution 
 ExamplesDraw values from the distribution and plot the histogram >>> import matplotlib.pyplot as plt >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show()Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(np.random.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show()Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show()
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/random/generated/numpy.random.noncentral_chisquare.html