On this page
numpy.random.randint
- numpy.random.randint(low, high=None, size=None, dtype=int)
- 
    Return random integers from low(inclusive) tohigh(exclusive).Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval [ low,high). Ifhighis None (the default), then results are from [0,low).Note New code should use the integersmethod of adefault_rng()instance instead; seerandom-quick-start.- Parameters
- 
      - lowint or array-like of ints
- 
        Lowest (signed) integers to be drawn from the distribution (unless high=None, in which case this parameter is one above the highest such integer).
- highint or array-like of ints, optional
- 
        If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if high=None). If array-like, must contain integer values
- sizeint or tuple of ints, optional
- 
        Output shape. If the given shape is, e.g., (m, n, k), thenm * n * ksamples are drawn. Default is None, in which case a single value is returned.
- dtypedtype, optional
- 
        Desired dtype of the result. Byteorder must be native. The default value is int. New in version 1.11.0. 
 
- Returns
- 
      - outint or ndarray of ints
- 
        size-shaped array of random integers from the appropriate distribution, or a single such random int ifsizenot provided.
 
 See also - random_integers
- 
       similar to randint, only for the closed interval [low,high], and 1 is the lowest value ifhighis omitted.
- Generator.integers
- 
       which should be used for new code. 
 Examples>>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], # random [3, 2, 2, 0]])Generate a 1 x 3 array with 3 different upper bounds >>> np.random.randint(1, [3, 5, 10]) array([2, 2, 9]) # randomGenerate a 1 by 3 array with 3 different lower bounds >>> np.random.randint([1, 5, 7], 10) array([9, 8, 7]) # randomGenerate a 2 by 4 array using broadcasting with dtype of uint8 >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], # random [ 1, 16, 9, 12]], dtype=uint8)
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/random/generated/numpy.random.randint.html