On this page
numpy.random.random_sample
- numpy.random.random_sample(size=None)
- 
    Return random floats in the half-open interval [0.0, 1.0). Results are from the “continuous uniform” distribution over the stated interval. To sample multiply the output of random_sampleby(b-a)and adda:(b - a) * random_sample() + aNote New code should use the randommethod of adefault_rng()instance instead; seerandom-quick-start.- Parameters
- 
      - sizeint or tuple of ints, optional
- 
        Output shape. If the given shape is, e.g., (m, n, k), thenm * n * ksamples are drawn. Default is None, in which case a single value is returned.
 
- Returns
- 
      - outfloat or ndarray of floats
- 
        Array of random floats of shape size(unlesssize=None, in which case a single float is returned).
 
 See also - Generator.random
- 
       which should be used for new code. 
 Examples>>> np.random.random_sample() 0.47108547995356098 # random >>> type(np.random.random_sample()) <class 'float'> >>> np.random.random_sample((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # randomThree-by-two array of random numbers from [-5, 0): >>> 5 * np.random.random_sample((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/random/generated/numpy.random.random_sample.html