On this page
numpy.random.RandomState.poisson
method
- RandomState.poisson(lam=1.0, size=None)
- 
    Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Note New code should use the poissonmethod of adefault_rng()instance instead; seerandom-quick-start.- Parameters
- 
      - lamfloat or array_like of floats
- 
        Expectation of interval, must be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. 
- sizeint or tuple of ints, optional
- 
        Output shape. If the given shape is, e.g., (m, n, k), thenm * n * ksamples are drawn. If size isNone(default), a single value is returned iflamis a scalar. Otherwise,np.array(lam).sizesamples are drawn.
 
- Returns
- 
      - outndarray or scalar
- 
        Drawn samples from the parameterized Poisson distribution. 
 
 See also - Generator.poisson
- 
       which should be used for new code. 
 NotesThe Poisson distribution For events with an expected separation the Poisson distribution describes the probability of events occurring within the observed interval . Because the output is limited to the range of the C int64 type, a ValueError is raised when lamis within 10 sigma of the maximum representable value.References- 1
- 
      Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html 
- 2
- 
      Wikipedia, “Poisson distribution”, https://en.wikipedia.org/wiki/Poisson_distribution 
 ExamplesDraw samples from the distribution: >>> import numpy as np >>> s = np.random.poisson(5, 10000)Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show()Draw each 100 values for lambda 100 and 500: >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/random/generated/numpy.random.RandomState.poisson.html