On this page
numpy.random.standard_normal
- numpy.random.standard_normal(size=None)
- 
    Draw samples from a standard Normal distribution (mean=0, stdev=1). Note New code should use the standard_normalmethod of adefault_rng()instance instead; seerandom-quick-start.- Parameters
- 
      - sizeint or tuple of ints, optional
- 
        Output shape. If the given shape is, e.g., (m, n, k), thenm * n * ksamples are drawn. Default is None, in which case a single value is returned.
 
- Returns
- 
      - outfloat or ndarray
- 
        A floating-point array of shape sizeof drawn samples, or a single sample ifsizewas not specified.
 
 See also - normal
- 
       Equivalent function with additional locandscalearguments for setting the mean and standard deviation.
- Generator.standard_normal
- 
       which should be used for new code. 
 NotesFor random samples from , use one of: mu + sigma * np.random.standard_normal(size=...) np.random.normal(mu, sigma, size=...)Examples>>> np.random.standard_normal() 2.1923875335537315 #random>>> s = np.random.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = np.random.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2)Two-by-four array of samples from : >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/random/generated/numpy.random.standard_normal.html