On this page
numpy.clip
- numpy.clip(a, a_min, a_max, out=None, **kwargs)[source]
-
Clip (limit) the values in an array.
Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1]is specified, values smaller than 0 become 0, and values larger than 1 become 1.Equivalent to but faster than
np.minimum(a_max, np.maximum(a, a_min)).No check is performed to ensure
a_min < a_max.- Parameters
-
- aarray_like
-
Array containing elements to clip.
- a_min, a_maxarray_like or None
-
Minimum and maximum value. If
None, clipping is not performed on the corresponding edge. Only one ofa_minanda_maxmay beNone. Both are broadcast againsta. - outndarray, optional
-
The results will be placed in this array. It may be the input array for in-place clipping.
outmust be of the right shape to hold the output. Its type is preserved. - **kwargs
-
For other keyword-only arguments, see the ufunc docs.
New in version 1.17.0.
- Returns
-
- clipped_arrayndarray
-
An array with the elements of
a, but where values <a_minare replaced witha_min, and those >a_maxwitha_max.
See also
Notes
When
a_minis greater thana_max,clipreturns an array in which all values are equal toa_max, as shown in the second example.Examples
>>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, 1, 8) array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) >>> np.clip(a, 8, 1) array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) >>> np.clip(a, 3, 6, out=a) array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8) array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])
© 2005–2022 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.23/reference/generated/numpy.clip.html