On this page
numpy.corrcoef
- numpy.corrcoef(x, y=None, rowvar=True, bias=<no value>, ddof=<no value>, *, dtype=None)[source]
-
Return Pearson product-moment correlation coefficients.
Please refer to the documentation for
covfor more detail. The relationship between the correlation coefficient matrix,R, and the covariance matrix,C, is\[R_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} C_{jj} } }\]The values of
Rare between -1 and 1, inclusive.- Parameters
-
- xarray_like
-
A 1-D or 2-D array containing multiple variables and observations. Each row of
xrepresents a variable, and each column a single observation of all those variables. Also seerowvarbelow. - yarray_like, optional
-
An additional set of variables and observations.
yhas the same shape asx. - rowvarbool, optional
-
If
rowvaris True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. - bias_NoValue, optional
-
Has no effect, do not use.
Deprecated since version 1.10.0.
- ddof_NoValue, optional
-
Has no effect, do not use.
Deprecated since version 1.10.0.
- dtypedata-type, optional
-
Data-type of the result. By default, the return data-type will have at least
numpy.float64precision.New in version 1.20.
- Returns
-
- Rndarray
-
The correlation coefficient matrix of the variables.
See also
-
cov -
Covariance matrix
Notes
Due to floating point rounding the resulting array may not be Hermitian, the diagonal elements may not be 1, and the elements may not satisfy the inequality abs(a) <= 1. The real and imaginary parts are clipped to the interval [-1, 1] in an attempt to improve on that situation but is not much help in the complex case.
This function accepts but discards arguments
biasandddof. This is for backwards compatibility with previous versions of this function. These arguments had no effect on the return values of the function and can be safely ignored in this and previous versions of numpy.Examples
In this example we generate two random arrays,
xarrandyarr, and compute the row-wise and column-wise Pearson correlation coefficients,R. Sincerowvaris true by default, we first find the row-wise Pearson correlation coefficients between the variables ofxarr.>>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> xarr = rng.random((3, 3)) >>> xarr array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) >>> R1 = np.corrcoef(xarr) >>> R1 array([[ 1. , 0.99256089, -0.68080986], [ 0.99256089, 1. , -0.76492172], [-0.68080986, -0.76492172, 1. ]])If we add another set of variables and observations
yarr, we can compute the row-wise Pearson correlation coefficients between the variables inxarrandyarr.>>> yarr = rng.random((3, 3)) >>> yarr array([[0.45038594, 0.37079802, 0.92676499], [0.64386512, 0.82276161, 0.4434142 ], [0.22723872, 0.55458479, 0.06381726]]) >>> R2 = np.corrcoef(xarr, yarr) >>> R2 array([[ 1. , 0.99256089, -0.68080986, 0.75008178, -0.934284 , -0.99004057], [ 0.99256089, 1. , -0.76492172, 0.82502011, -0.97074098, -0.99981569], [-0.68080986, -0.76492172, 1. , -0.99507202, 0.89721355, 0.77714685], [ 0.75008178, 0.82502011, -0.99507202, 1. , -0.93657855, -0.83571711], [-0.934284 , -0.97074098, 0.89721355, -0.93657855, 1. , 0.97517215], [-0.99004057, -0.99981569, 0.77714685, -0.83571711, 0.97517215, 1. ]])Finally if we use the option
rowvar=False, the columns are now being treated as the variables and we will find the column-wise Pearson correlation coefficients between variables inxarrandyarr.>>> R3 = np.corrcoef(xarr, yarr, rowvar=False) >>> R3 array([[ 1. , 0.77598074, -0.47458546, -0.75078643, -0.9665554 , 0.22423734], [ 0.77598074, 1. , -0.92346708, -0.99923895, -0.58826587, -0.44069024], [-0.47458546, -0.92346708, 1. , 0.93773029, 0.23297648, 0.75137473], [-0.75078643, -0.99923895, 0.93773029, 1. , 0.55627469, 0.47536961], [-0.9665554 , -0.58826587, 0.23297648, 0.55627469, 1. , -0.46666491], [ 0.22423734, -0.44069024, 0.75137473, 0.47536961, -0.46666491, 1. ]])
© 2005–2022 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.23/reference/generated/numpy.corrcoef.html