On this page
numpy.cumsum
- numpy.cumsum(a, axis=None, dtype=None, out=None)[source]
-
Return the cumulative sum of the elements along a given axis.
- Parameters
-
- aarray_like
-
Input array.
- axisint, optional
-
Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array.
- dtypedtype, optional
-
Type of the returned array and of the accumulator in which the elements are summed. If
dtypeis not specified, it defaults to the dtype ofa, unlessahas an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used. - outndarray, optional
-
Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output but the type will be cast if necessary. See Output type determination for more details.
- Returns
-
- cumsum_along_axisndarray.
-
A new array holding the result is returned unless
outis specified, in which case a reference tooutis returned. The result has the same size asa, and the same shape asaifaxisis not None orais a 1-d array.
See also
Notes
Arithmetic is modular when using integer types, and no error is raised on overflow.
cumsum(a)[-1]may not be equal tosum(a)for floating-point values sincesummay use a pairwise summation routine, reducing the roundoff-error. Seesumfor more information.Examples
>>> a = np.array([[1,2,3], [4,5,6]]) >>> a array([[1, 2, 3], [4, 5, 6]]) >>> np.cumsum(a) array([ 1, 3, 6, 10, 15, 21]) >>> np.cumsum(a, dtype=float) # specifies type of output value(s) array([ 1., 3., 6., 10., 15., 21.])>>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns array([[1, 2, 3], [5, 7, 9]]) >>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows array([[ 1, 3, 6], [ 4, 9, 15]])cumsum(b)[-1]may not be equal tosum(b)>>> b = np.array([1, 2e-9, 3e-9] * 1000000) >>> b.cumsum()[-1] 1000000.0050045159 >>> b.sum() 1000000.0050000029
© 2005–2022 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.23/reference/generated/numpy.cumsum.html